A Sharp Bound for the Degree of Proper Monomial Mappings Between Balls
نویسندگان
چکیده
The authors prove that a proper monomial holomorphic mapping from the two-ball to the N-ball has degree at most 2N 3, and that this result is sharp. The authors first show that certain group-invariant polynomials (related to Lucas polynomials) achieve the bound. To establish the bound the authors introduce a graph-theoretic approach that requires determining the number of sinks in a directed graph associated with the quotient polynomial. The proof also relies on a result of the first author that expresses all proper polynomial holomorphic mappings between balls in terms of tensor products.
منابع مشابه
Sharp Upper bounds for Multiplicative Version of Degree Distance and Multiplicative Version of Gutman Index of Some Products of Graphs
In $1994,$ degree distance of a graph was introduced by Dobrynin, Kochetova and Gutman. And Gutman proposed the Gutman index of a graph in $1994.$ In this paper, we introduce the concepts of multiplicative version of degree distance and the multiplicative version of Gutman index of a graph. We find the sharp upper bound for the multiplicative version of degree distance and multiplicative ver...
متن کاملA Generalized Hochster’s Formula for Local Cohomologies of Monomial Ideals
The Hilbert series of local cohomologies for monomial ideals, which are not necessarily square-free, is established. As applications, we give a sharp lower bound of the non-vanishing degree of local cohomologies and also a sharp lower bound of the positive integer k of k-Buchsbaumness for generalized CohenMacaulay monomial ideals.
متن کاملA new approach to compute acyclic chromatic index of certain chemical structures
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph $G$ denoted by $chi_a '(G)$ is the minimum number $k$ such that there is an acyclic edge coloring using $k$ colors. The maximum degree in $G$ denoted by $Delta(G)$, is the lower bound for $chi_a '(G)$. $P$-cuts introduced in this paper acts as a powerfu...
متن کاملThe second geometric-arithmetic index for trees and unicyclic graphs
Let $G$ be a finite and simple graph with edge set $E(G)$. The second geometric-arithmetic index is defined as $GA_2(G)=sum_{uvin E(G)}frac{2sqrt{n_un_v}}{n_u+n_v}$, where $n_u$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$. In this paper we find a sharp upper bound for $GA_2(T)$, where $T$ is tree, in terms of the order and maximum degree o...
متن کاملPolynomials Constant on a Hyperplane and Cr Maps of Hyperquadrics
We prove a sharp degree bound for polynomials constant on a hyperplane with a fixed number of distinct monomials for dimensions 2 and 3. We study the connection with monomial CR maps of hyperquadrics and prove similar bounds in this setup with emphasis on the case of spheres. The results support generalizing a conjecture on the degree bounds to the more general case of hyperquadrics. 2000 Math....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008